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We present a numerical integration scheme designed to treat the type of multicenter integrals encountered in
electronic structure calculations. By developing a notation that differentiates between those atomic centers
where integrands have significant amplitudes and those where they do not, we find a way to decompose
multicenter integrals (into sums over one-center integrals) such that the number of operations needed for a
given matrix element does not increase with increasing system size. In addition, a new adaptive one-center
grid is presented that accounts for the shell structures of core electrons while allowing for the vastly different
behavior of integrands in the valence and tail regions. Through the use of model integrands the necessary
grid points are automatically generated for a given system based on the accuracy requested. Our new multicenter
decomposition scheme and one-center grid have been tested separately and in conjunction with each other.
Results of such tests demonstrate that our decomposition scheme combined with our one-center grid provides
significant improvements over existing multicenter integration schemes. In addition to demonstrating the
efficiency of the method for any size system, we will show that the CPU cost of an integral remains constant
for systems larger than some easily achievable threshold size. In general comparison shows that the larger
the system, the higher is the percent gain in efficiency over previously published methods. In addition, the
higher the accuracy targeted, the higher percentage the gain. Also, the higher the accuracy required for a
given system, the higher is the gain in efficiency. The method is therefore of great use for large polyatomic
molecules and periodic systems.

I. Introduction

The Hohenberg-Kohn1 theory states that given a suitable
density,F(r), the exchange and correlation contributions to the
total energy of the system can be obtained from a three-
dimensional integral of the general form

The integrand,F(r), in the above expression extends over all
space and is, in turn, a function of the densityF(r). Even if the
exact form forF were known, it would not be well approximated
by simple mathematical forms or expansions inF(r). In fact,
all functional forms currently in use result in integrands that
cannot be integrated analytically. To complicate matters further,
the integrands associated with this class of physical problem
all possess cusp singularities at the locations of the atomic nuclei
that cause the entire problem to be rather poorly behaved, in a
mathematical sense, and require specialized strategies to obtain
high-quality results. Computational density functional schemes,2

particularly those that employ the style of localized basis
functions commonly used in quantum chemistry, require ef-
ficient and accurate numerical integration packages to be of
practical value.

In what follows, we will describe an approach that is efficient,
accurate, and scales very favorably with system size. We have
done this by making improvements to three areas of numerical

integration technology. First, we have formulated a new scheme
to remove the cusp singularities in the integrands. We will show
that this strategy greatly reduces the degree of angular variation
in the product of the integrand and the integration weight
compared to previously published methods. Second, our mul-
ticenter decomposition scheme is capable of exploiting the fact
that not all regions of space contribute significantly to the total
value of a given integral. The scheme draws upon economies
inherent in the use of a local basis to identify and carefully
integrate regions of space that make large contributions to the
integral while spending less effort on regions that make very
small contributions. This aspect of our approach becomes
critically important when treating crystalline systems that
employ periodic boundary conditions, since a straightforward
sum over the “infinite” number of atoms is not only unnecessary
but impractical. Finally, we have adopted a modified one-center
integration scheme that better accounts for the atomic shell
structure. We will demonstrate that most of the dramatic
efficiency gains are achieved via the new multicenter decom-
position scheme.

Section II presents the mathematical framework of our
multicenter decomposition scheme. Section III discusses the
details of our one-center integration scheme and automatic grid
point generator. To compare our one-center integration strategy
to those previously published and to allow us to clearly
demonstrate where our efficiency gains are originating (since
we have changed both the one-center integration and the
multicenter decomposition strategies), we will adopt Becke’s3

decomposition scheme when testing our one-center integration
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grid. Section IV contains the results of using both our
decomposition scheme and our one-center integration strategy
on the set of test systems previously proposed by Perez, Becke,
and San Fabian (PBS) in section IV. To demonstrate the
practical feasibility of this scheme in self-consistent-field
calculations, we also present results for bulk silicon and
aluminum obtained using our periodic SCF Gaussian basis
density functional program GAPSS. Concluding remarks can
be found in section V.

II. Theory

Numerical integration schemes for quantum mechanical3-15

applications can be roughly divided into two groups. In the first
group of methods, the cusps (located at nuclear positions) are
treated by partitioning space into cells commensurate with the
atomic organization of the system. Once the total space of
integration has been divided into pieces (which can result in
complicated geometric shapes), integration is then carried out
on all of the various subcomponents. This strategy is known as
the “cellular” approach and has been reviewed by Te Velde
and Baerends.5 An alternative to the cellular approach partitions
the multicenter integrand into subcomponents by employing one-
center nuclear weight functions.3,6 Since our approach employs
such weight functions and certain aspects of our strategy rely
on ideas previously described by both Becke3 and Delley,6 we
will begin this section with a brief discussion of the general
characteristics of methods adopting this approach. The primary
goal of this section is to develop the mathematical expressions
that define our multicenter decomposition scheme.

IIa. Popular Approach . We begin by defining the general
role of nuclear weighting functions3 and establishing relation-
ships between certain quantities that will appear in our equations
that are either identical to or are closely related to quantities
previously defined by other researchers.3,6 First, consider a one-
center partition function,ωi(rb), which satisfies the normalization
condition

It is important to note that the summation index,i, in eq 2
extends over all nuclear centers in the polyatomic system. By
use of this partition function, a multicenter function,F, can be
decomposed into a sum of one-center components,

where

Thus, the three-dimensional multicenter integral,

can be reduced to a sum of single-center integrations,

where

As will be seen below, the one-center partition function,ωi(rb),

must be properly chosen if the one-center function,Fi(rb), is to
be well behaved and high numerical accuracy and efficiency
are to be achieved.

A common approach to constructing one-center partition
functions, originating from Becke,3 employs a cutoff profile,
S(µij), for atomsi and j, of the form

where

and

Here,ri andrj represent distances to atomi andj, respectively,
from the pointrb andRij is the internuclear separation. By use
of these definitions, Becke’s3 one-center nuclear weight function
is then defined by

where

Note that the one-center weight function is composed of a
product of the cutoff functions,S(µij). The partition function
S(µij) is selected in such a way that it takes on the value of
unity (or very near unity) forr at and near nucleusi but vanishes
(or nearly vanishes) at or near nucleusj. An additional property
of the one-center weight functions is thatS(µij) + S(µji) ) 1.
The net effect of multiplyingS(µij) and a multicenter integrand
is to remove the cusp centered at atomj while leaving the cusp
at centeri intact.

Our approach, to be described in the following subsection,
also uses Becke’s3 cutoff profile function. However, our strategy
only uses this function to perform “two-center” decompositions
(where it is referred to asSij) while for those cases wherei )
j, a value ofSij ) 1/2 is used. On the basis of the work of
Hirshfeld,16 Delley6 has suggested that the spherical atomic
density,Fi(r) (or related functions such asFi

2(r) and Fi(r)/r2),
should be used to definePi(r) in eq 11. Our approach contains
elements of both Becke’s and Delley’s schemes by using slightly
modified cutoff profiles in conjunction with physically motivated
one-center weight functions.

IIb. New Multicenter Decomposition. In quantum mechan-
ical applications the dominant computational cost is the evalu-
ation of integrals (matrix elements) of the formA ) ∫øRiVøâj dxb.
For the purposes of this study we specifically wish to consider
the basis functionsøRi to be localized functions centered on atom
“ i” with the compound index “R” denoting the angular and radial
properties of the function. Since we are interested in electronic
structure applications,V can be assumed to be the exchange-
correlation potentialVxc, the Hartree Coulomb potential isVH

or their sum, and the Kohn-Sham effective potential isVeff. In
all cases the presence of density cusps or Coulomb singularities
will introduce sharp features into the various integrands at the
location of the nuclei. In fact, the largest contribution to these

∑
i

ωi( rb) ) 1 (2)

F( rb) ) ∑
i

Fi( rb) (3)

Fi( rb) ) ωi(ri)F( rb) (4)

I ) ∫F( rb) d3r (5)

I ) ∑
i

I i (6)

Ii ) Fi( rb) d3r (7)

S(µij) ) 1
2

{1 - p{p[p(µij)]}} (8)

p(µ) ) 3
2

µ - 1
2

µ3 (9)

µij )
ri - rj

Rij
(10)

ωi(r) ) Pi(r)/∑
i

Pi(r) (11)

Pi(r) ) ∏
j*i

S(µij) (12)
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integrals typically originates from regions of space that are in
proximity to the nuclei. The total integrand, however, is the
product of the potential and the basis functions used to form
the matrix representation of the operator. The spatial behavior
of the potential and that of the basis functions can be very
different.

In this regard, we will explore the computational economies
that can be derived from using “localized” basis functions to
expand the ground-state wave function. The creation of suitable
atom-centered local basis functions by forming linear combina-
tions of Gaussian functions17 is an example of an approach
commonly used in computational chemistry18 and physics.19

With the exception of diffuse polarization functions, these basis
functionsøRi typically approximate atomic one-electron eigen-
functions and hence are strongly localized around the nucleus.
When such functions are used, the cusp inV due to the presence
of some atom “n” that resides far from the basis functions on
atoms “i” and “j” will be reduced owing to the smallness of
the basis productøRiøâj in regions of space near atom “n”. As
a direct consequence, the contribution of atom “n” to the integral
A will be small. Stated equivalently, the dominant contributions
to the integrandøRiVøâj arise from atoms “n” that are in the
vicinity of the atoms “i” and “j”.

To quantify these ideas, we first focus on understanding how
to partition the potential (not the total integrand as in previous
methods) into a sum over atomic contributions:

Such a partitioning could, for example, be accomplished with
a one-center partitioning function of the type proposed by
Delley.6 As usual, the sum is over all atoms in the system and
Vn represents the contribution of atom “n” to the total potential
V. To develop a notation capable of distinguishing between the
various contributions to a matrix elementA ) ∫øRiVøâj dxb, first
consider the setM composed of all atoms in the system except
atomsi andj. In addition, we define two additional sets, which
are subsets ofM, that consist of all atoms within some arbitrary
(but finite) radiusRo of atom i or j asNi andNj, respectively.
The intersection of the setsNi and Nj (i.e., I ) Ni ∩ Nj) is
therefore the set of atoms that are withinRo of both atomsi
andj. This collection of atoms defines what we will refer to as
the “inner zone” of atoms. The remainder of the polyatomic
system, the “outer zone”, is therefore defined as the setO )
M\I. By use of these definitions, eq 13 becomes

where

without any loss of generality or approximation being made.
By substituting eqs 14 and 15 into our previous definition

for the general matrix elementA, we thus obtain

which is an expression that merits some discussion. The second
term in eq 16 consists of a sum over all atoms within the “inner
zone”. As such, the three center integrals contained in this sum
can be expected to make significant contributions to the
integrated value ofA. The terms in this sum require three-center
grids in order to efficiently integrate their contribution to high
levels of accuracy. By comparison, the first term has now taken
on the appearance of a two-center integral even though it is
clear, by direct substitution of eq 15, that it contains three-center
components. These three-center components, however, are found
within the “outer zone” of atomsi or j and thus make smaller
contributions to the total value ofA. It would be customary to
integrate such terms using a three-center integration grid. The
inner zone, however, can always be chosen in such a way that
these three-center integrals will be within 2 orders of magnitude
of the target accuracy for the matrix element (e.g., if the target
accuracy is 1× 10-05, then these integrals will be smaller than
1 × 10-03). These terms are therefore small enough (in a relative
sense) when compared to the absolute accuracy target that the
needed two to three significant figures of absolute accuracy in
these terms can be obtained using two-center (ij ) integration
grids. Thus, the three-center integrals contained in the first term
of eq 16 can be evaluated using two-center integration grids.
For large polyatomic or periodic systems the number of such
terms can be substantial; reducing the number of explicit
integration centers can lead to dramatic cost savings without
sacrificing numerical accuracy if done properly.

To derive explicit formula for the nuclear weights, we now
employ the cutoff profile functionSij of eq 8 to decompose the
three-center integrals (ijk) in eq 16 into two two-center (ik and
jk) integrals and finally decompose all two-center integrals into
one-center terms by the same procedure. By direct substitution
we thus obtain

Note that all integrals in the above expression contain a single
integration center. For example, the last integral in the final
term is centered at site “k”, since the cusp at centeri has been
removed by the functionSji and the cusp atj is eliminated by
Skj. By substituting eqs 15 and 13 into eq 17 (and performing
some algebra), we obtain the working expression for our
integration scheme,

where

V ) ∑
n

Vn ) ∑
n

Vωn (13)

V ) Vi + Vj + ∑
k∈I

Vk + ∑
l∈O

Vl

) Vij + ∑
k∈I

Vk (14)

Vij ) Vi + Vj + ∑
l∈O

Vl (15)

A ) ∫øRi
Vøâj

dxb

) ∫øRi
Vijøâj

dxb + ∑
k∈I
∫øRi

Vkøâj
dxb (16)

A ) ∫øRi
Vijøâj

(Sij + Sji) dxb + ∑
k∈I
∫øRi

Vkøâj
(Sij + Sji) dxb

) ∫øRi
Vijøâj

(Sij + Sji) dxb + ∑
k∈I
∫øRi

Vkøâj
[Sij(Sik +

Ski) + Sji(Sjk + Skj)] dxb

) ∫{øRi
Vijøâj

Sij + ∑
k∈I

øRi
Vkøâj

SijSik} dxb +

∫{øRi
Vijøâj

Sji + ∑
k∈Iij

øRi
Vkøâj

SjiSjk} dxb +

∑
k∈I

∫øRi
Vkøâj

{SijSki + SjiSkj} dxb (17)

∫øRi
Vøâj

dxb ) ∫øRi
Vøâj

gij
i dxbi + ∫øRi

Vøâj
gij

j dxbj +

∑
k∈I
∫øRi

Vøâj
gij

k dxbk (18)

gij
i ) Sij{1 + ∑

k∈I

(Sik - 1)ωk} (19)
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and

The analogous quantity,gij
j , has the same form as that ofgij

i

with the exception that thei andj indices are interchanged. We
note that the final form represented by eq 18 is easy to use,
since it involves only the multiplication of the original integrand
by a nuclear weight function. When attempting to integrate the
charge density (or when centeri ) j), eq 18 simplifies to

where

and

In summary, we decompose the multicenter integral
∫øRiVøâj dxb into a sum over one-center contributions. Unlike
previous methods, however, we do not place one-center grids
on all atoms contained in the system and subsequently sum over
each one-center contribution to obtain an estimate of the total
integral. Instead we treat the total integral as if it were composed
of two “zones”. For an inner zone, where contributions to the
total integral are large, all multicenter features must be retained
and one-center integration must be done very accurately. The
remaining portion of the material, composed of atoms not
explicitly included in the inner zone, is composed of terms that
are smaller in absolute magnitude and can therefore be computed
with less relative accuracy using sufficiently large inner zone
one-center grids. One of the motivations for adopting this
approach is that it is computationally more efficient to chose
slightly enlarged one-center grids in the inner zone (to suf-
ficiently integrate the outer zone) than to increase the number
of atomic centers where one-center integration grids will be
explicitly constructed.

An added benefit associated with this approach is that the
cost for each multicenter integral will not increase as the size
of the system is increased. The inner zone can be defined
independently of the system size assuming the system is not so
small that all atoms are contained within this zone. For very
large molecules or crystalline systems, the number of nonneg-
ligible matrix elements increases linearly with the number of
atoms in the systems. In such cases, the numerical integration
costs in our scheme will also increase linearly. Of course, any
scheme that exploits the local nature of the basis set can, in
principle, achieve such scaling. The challenge is to design an
approach that is robust and efficient that does not suffer from
the use of excessively arbitrary cutoffs. In our scheme, the
boundary between the inner and outer zones, of course, is not
unique. It can, however, be selected on the basis of the accuracy
requirements of the calculation and the integrands being
evaluated and through a well-defined process. In the following
sections we will demonstrate numerically that, in practice, a
general definition of the inner zone size can be adopted that
achieves the absolute accuracy objectives while exhibiting high
overall efficiency.

III. One-Center Integration and Automatic Grid
Generator

Recently, there has been considerable emphasis on the
development and comparison of one-center integration strategies

in the literature.8-15 Such studies typically adopt a multicenter
decomposition scheme (frequently due to Becke3) and concen-
trate on understanding how various improvements to the single-
center integration processes can be made. Here, we will describe
our adaptive one-center integration scheme, discuss some
characteristics associated with our automatic grid generator, and
finally compare our results to those obtained by other research-
ers. To facilitate the comparison and to distinguish between the
contributions made by our one-center integration scheme from
those made by our multicenter decomposition strategy, we will
use Becke’s3 nuclear weights in all results of this section unless
otherwise stated.

IIIa. One-Center Integration . Once a multicenter decom-
position scheme has been chosen, there are many ways to
perform the necessary one-center integrations. In fact, there are
several schemes3,6-15 that all result in slightly different grids in
use today. In this section we will focus on describing our
approach. As will be seen below, an adaptive radial grid that
can account for the shell structure of the center of integration
is important.

Radial Grids. For its simplicity in application a unique
analytical expression capable of determining the radial grid is
desirable. Simplicity, however, is not necessarily the most
important criterion in determining an effective quadrature grid.
Optimal performance is typically achieved by tuning the radial
grid to the cusp and shell structures of the atomic densities.
This perspective drives us to empirically divide the radial
integration grid into segments:

For smallr, we employ the geometric seriesRi (au) ) (0,
1/(2z), 3/(2z), 9/(2z), ...), wherez is the nuclear charge of the
atom of interest. This process is continued for values ofRi <
3/4. For 3/4 < Ri < 1, a value ofRi ) 1 au is used followed by
the sequenceRn ) (2, 3, 5, 7, 10, 15,Rmax) until the maximum
value ofRhas been reached. For all results reported here a value
of Rmax ) 30 au has been used, which is more than sufficient
for most applications althoughRmax can be trivially enlarged to
suit special needs when necessary. Gauss-Legendre quadrature
is used within all radial subregions. Gill et al.11 have also
proposed a scheme that divides the radial grid into a few regions,
although the divisions are not as extensive as what is being
proposed here. The advantage of dividing the radial grid into
several segments is that it provides the flexibility necessary to
adapt to the changes in the integrand through the cusp and
valence regions. With the type of grid just proposed, the addition
of grid points to one radial segment is completely decoupled
from activities in another segment. This allows grid points to
be placed were they are most needed and provides a mechanism
to quickly converge integrated quantities to high levels of
accuracy.

Angular Grids.As described above, the radial grid is divided
into subregions to improve efficiency. This strategy also allows
the use different angular grids in each individual subregion and
provides the needed flexibility to adapt to angular variations in
the integrand. The angular grids are constructed from special
point formulas that exactly integrate spherical harmonics over
the surface of the unit sphere up to a maximum,lmax.20-24 The
highest order special point formula implemented isl ) 59, which
generates a grid that contains 1202 integration points.24 For

I ) ∫dΩ ∫0

∞
F( rb)r2 dr ≈ ∫dΩ ∫0

RmaxF( rb)r2 dr

) ∑
i)1

n ∫dΩ ∫Ri

Ri+1 F( rb)r2 dr (24)

gij
k ) ωk{SijSki + SjiSkj} (20)

∫øRi
Vøâi dxb ) ∫øRi

VøâiGii
i dxbi + ∑

k∈I
∫øRi

VøâiGii
k dxbk (21)

Gii
i ) 1 + ∑

k∈I

(Sik - 1)ωk (22)

Gii
k ) ωkSki (23)

2120 J. Phys. Chem. A, Vol. 103, No. 13, 1999 Lin et al.



situations that require higher accuracy a product scheme that
employs Gauss-Legendre quadrature forθ and a geometric
trapezoidal quadrature foræ are used. Regardless of the accuracy
criterion, bothθ andæ are integrated to the samelmax. Although
some efficiency is sacrificed by not allowing the maximum
angular momentum to vary independently forθ andæ, we feel
the numerical stability gained with respect to rotational trans-
formations justifies integrating them to the same order. The
smallest angular grid used in our approach for any radial
subregion is capable of integrating a polynomial exactly tol )
3. No attempt is made by the numerical integration algorithms
to reorient the polyatomic system from that input by a user in
the geometry definition, though such reorientation might be
beneficial.25-27

IIIb. Automatic One-Center Grid Generator . For ease of
use and reliability an automatic grid generation algorithm that
is capable of selecting the appropriate number and location of
grid points necessary to integrate the integrand of interest to
the target accuracy is highly desired. The basic procedure
involved in our automatic grid generation algorithm is as follow.

1. A set of prototype integrands (e.g.,FiVeff, FiVxc, F) that
behave similarly to the actual integrands of interest are evaluated
on a set of test grids. These prototype integrands share the
attribute that they can be expediently evaluated on the test grids
using a density that has been formed from the superposition of
atomic densities. We also find that these test functions generate
grids that reliably integrate actual matrix elements in our
electronic structure program, GAPSS.28,29

2. Each radial subregion is searched in sequence to determine
the number of radial and angular points needed to guarantee
that the test integrands can be integrated to 1 order of magnitude
greater accuracy than the target accuracy for the real integral.
Within a radial subregion this is accomplished by first evaluating
the test integrands on an unnecessarily large radial grid in
combination with a moderately sized angular grid. The number
of radial grid points (N) is then successively increased from
small to largeN until the difference between the current value
and that found for the very large radial grid is smaller than the
absolute tolerance. When the smallest grid satisfying this
criterion is determined, the procedure is halted and an analogous
process is initiated for the angular grids combined with the
newly determined radial grid. This procedure is repeated for
all radial subregions for all atoms in the system. Absolute
accuracy (as opposed to a relative accuracy) is always chosen
as the basis for the acceptance of a given grid in our approach.

When the acceptance criterion for each subregion is set to
be an order of magnitude more accurate than the target integral,
the probability that the overall accuracy target will be met is
greatly increased. The statistical issues involved can be under-
stood by noting that the number of potential sources of error
involved in selecting the grid is on the order of 2× (10-15)×
Ncenter (one each for the radial and angular components
multiplied by the typical number of radial segments for a given
atomic center times the total number of centers in the polyatomic
system). If we assume that each error source contributes a
random error greater or less than some valueε, then the total
statistical error would be of the order [(20-30)Ncenter]1/2 larger
thanε. Thus, for a wide range of atomic centers,Ncenter, a value
of ε that is approximately1/10 of the target accuracy would yield
a final accuracy that is of the same order of magnitude as that
targeted by the user. The signs of these errors can also be
random. Therefore, some systems can experience fortuitous
cancellation of errors where others may not be as fortunate. If,
for example, all errors possessed the same sign and absolute

magnitude, the total error could be as large as (2-3) × Ncenter

× ε. In practice, however, we find that the final errors do not
deviate significantly from the “rule-of-thumb” given above.

IIIc. Integration Efficiency of the One-Center Grid . In a
recent work, Perez-Jorda, Becke, and San-Fabian (PBS)11

presented an adaptive one-center integration scheme and
compared the performance of that scheme to several previously
published methods. The results of that comparison indicated
that the PBS strategy provided the most efficient approach for
the set of molecules and integrands tested. In the following
paragraphs we will present the results of our one-center
integration scheme and compare the results to those obtained
by PBS.30 To facilitate the comparison, we have evaluated the
same test integrand with the five accuracy targets (10-3-10-7

au) for the 21-molecule test suite of PBS at the molecular
geometries reported in that work. The test integrand is the total
molecular density that is synthesized from a superposition of
atomic densities. The nuclear weight function proposed by
Becke3 has been used to decompose the multicenter integrals
into sums over one-center integrals. Thus, any differences
between the results of this study and that of PBS are due entirely
to the two different one-center integration schemes being used.

The number of grid points required to integrate the total
density for five absolute accuracy targets,ε, and the resulting
absolute errors for the 21-molecule data set are shown in Table
1. When the relative errors presented in Tables 1 and 2 of PBS
are multiplied by the total number of electrons in the molecule
and thus converted to an absolute error, a direct comparison of
the results of this study and that of PBS can be made. By such
a comparison, it can then be seen that our one-center integration
scheme is generally more efficient, requiring fewer grid points
than that of PBS for 20 out of 21 molecules. The only exception
is for C60, for which PBS’s results are superior. The underlying
reason for this is unclear to us. Possibly there is a significant
advantage associated with decoupling theθ andæ grids in C60
or there may be some unexpected benefit in choosing a special
orientation as described in ref 11 because of the high symmetry
of the molecule. Overall, however, our one-center grid is more
efficient than that reported by PBS.

With the intent of providing an intuitive and unbiased method
of comparing the integration efficiency of various one-center
integration schemes, PBS suggested that the functionø )
-log10(Ngrid/Natoms)/log10 εr (whereNgrid is the number of grid
points required to achieve a given relative errorεr) be used as
a measure of efficiency. The properties of the function are such
that the smaller the value ofø the greater the efficiency of the
method (note thatø ) 0 or 10ø ) 1 represents infinitely high
efficiency). Using this function and the data provided in Table
1 (converted to relative as opposed to absolute errors), we find
that our grid is characterized by 10ø ) 4.190 compared to PBS’s
reported value of 4.484.

To further test the relationship between the efficiency of the
one-center integration scheme and the multicenter decomposition
strategy, we have performed tests using our one-center grids
with the weight function

proposed by Delley.6 For each accuracy target (10-3-10-7) we
have again computed the average number of grid points needed
to achieve a given target for all 21 molecules in the PBS test
suite. Curves B and C of Figure 1a illustrates how the

ωi(Fi/ri
2) )

Fi/ri
2

∑
j

(Fj/rj
2)
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average number of grid points varies as a function of accuracy
target using our one-center grids with Becke’s3 and Delley’s6

weights. For comparison, the figure also includes the published
results of PBS (curve A) using Becke’s3 weight functions and
the PBS one-center integration scheme. For each of the five
target accuracies it can be seen that our one-center grid
combined with either Becke’s or Delley’s weights is more
efficient than the PBS result. Perhaps more interestingly, the
integration efficiency index of Delley’s weight function and our
one-center grid is 3.806, which is substantially more efficient
than that of Becke’s weight with our grids. Figure 1b demon-
strates how the number of grid points increases as a function
of the number of atomic centers in the molecule for an absolute
accuracy target of 1.0× 10-05. These data clearly show the
anomaly mentioned above for C60 and the fact that Delley’s
weight with our one-center grid possesses the best scaling as a
function of system size.

Parts a and b of Figure 1 also demonstrate the pronounced
effect that the multicenter decomposition scheme can have on
the overall efficiency of a given method. For example, Becke’s
weight with our one-center grid yields an efficiency index of
4.190 while the same weights with PBS grids produces an index
of 4.484. This level of difference represents a modest improve-

ment. However, our one-center integration scheme in conjunc-
tion with Becke’s and Delley’s weights yields a PBS efficiency
index of 4.190 and 3.806, respectively. These results suggest
that when the multicenter decomposition scheme is properly
selected, significant improvements in overall efficiency can be
achieved. In the following sections we will show that by use of
our new decomposition scheme, this is indeed the case.

Finally, we propose a slightly different merit function than
that suggested by PBS. We propose a function that is more
indicative of how the number of grid points increases as the
absolute accuracy target is decreased. Thus, we suggest a
function that is characterized by the prefactorC and an order
of convergence parametern,

whereλ is the absolute error resulting from the grid. A small
prefactor means a method is efficient in achieving low accura-
cies, while a method with a large order of convergence can
efficiently achieve high-accuracy targets. By a least-squares fit

TABLE 1: Number of Grid Points of Our One-Center Grid
Generated by Superposition of Atomic Densities (Upper
Rows) and Absolute Errors (Lower Rows) for 21 Molecules
at Five Absolute TolerancesEa

tolerance E-3 E-4 E-5 E-6 E-7

H2O 2939 7487 11572 22611 43156
7.0e-5 1.5e-5 5.1e-6 3.0e-7 3.3e-8

NH3 4252 16353 18799 45716 79321
9.7e-4 4.4e-5 2.5e-6 4.9e-6 4.6e-8

CH4 4400 13013 28794 63949 99817
2.7e-4 1.9e-5 5.7e-5 9.4e-8 5.2e-8

C2H6 (D3h) 10172 30386 93142 190414 416628
1.6e-3 5.5e-5 7.4e-6 4.3e-10 4.3e-8

C2H5OH 14664 46243 90147 166425 329492
1.4e-3 4.6e-5 6.3e-6 7.9e-7 6.6e-8

ClOH 3144 7056 12815 34432 79910
2.2e-4 3.e-5 2.6e-6 7.7e-7 5.4e-8

BH3 3741 7787 15292 31669 63233
9.8e-4 2.8e-4 1.5e-4 4.4e-6 4.0e-8

CClFH-CClFH (Ci) 7624 19910 40380 97694 169842
1.3e-3 9.2e-5 1.7e-6 5.8e-7 7.3e-8

C2H6 (D3d) 8804 27390 44044 127480 189104
1.3e-3 2.1e-4 1.7e-4 2.7e-7 8.0e-7

CFH-CFH 5330 15560 38048 77776 151564
5.6e-3 3.9e-5 1.1e-5 4.7e-8 1.6e-8

CCl2-CH2 (C2V) 7624 19910 40380 97694 169842
1.3e-3 9.2e-5 1.7e-6 5.8e-7 7.3e-8

C6H6 18414 65124 159714 319024 489258
7.5e-4 7.7e-5 2.0e-5 1.6e-6 7.3e-8

SF6 10953 26569 56969 91380 162287
7.3e-4 3.9e-5 2.1e-6 5.9e-7 4.2e-8

C5H5N5 33985 71900 303730 629775 1204005
6.7e-4 6.0e-4 7.3e-5 5.5e-7 4.0e-6

ZnCl3(C5H6N5) 39667 169464 421827 846220 1808741
7.2e-4 2.8e-4 5.5e-5 5.2e-6 2.5e-6

C5H6N2O2-C6H4O2 75255 460600 970533 1923858 3856271
3.3e-3 2.2e-4 2.1e-5 1.1e-6 8.4e-9

C12H14N2O2 53406 244760 774644 1454808 3424794
2.9e-3 3.8e-4 1.6e-4 2.9e-5 2.3e-7

C15H12N2O2 102969 294559 752082 1770858 3155695
2.5e-4 6.1e-5 1.1e-4 8.2e-6 8.6e-6

C17H21NO4 79275 354970 992836 2095514 4037950
4.5e-3 5.9e-4 2.8e-5 3.4e-6 1.7e-7

C20H29N3O2 133701 482734 1268229 2883650 4995880
4.9e-4 2.1e-3 3.6e-4 8.6e-6 7.9e-7

C60 310860 779220 2931420 6200340 11802468
1.3e-3 1.3e-4 1.1e-4 1.2e-5 2.0e-6

a No advantage has been taken of molecular symmetry. The
multicenter decomposition scheme described in ref 3 has been used.

TABLE 2: Number of Grid Points Required to Integrate
the Total Charge Density Using for Five Target Accuracies;
Absolute Errors Are Also Illustrated a

tolerance E-3 E-4 E-5 E-6 E-7

H2O 1065 2695 4948 7825 11436
3.1e-4 1.8e-5 9.0e-7 2.8e-7 1.9e-8

NH3 1441 3439 7079 12205 16663
4.9e-4 3.8e-5 1.1e-6 4.9e-8 6.6e-8

CH4 1683 3982 6538 14163 20158
6.8e-4 4.7e-5 1.8e-7 4.4e-7 3.9e-8

C2H6 (D3h) 3858 6262 14367 22200 34125
3.3e-4 1.1e-4 3.5e-7 1.7e-7 1.5e-7

C2H5OH 4484 8415 18185 30394 67572
3.2e-4 3.6e-5 6.3e-6 3.8e-7 1.9e-7

ClOH 1942 3498 6942 10897 19082
6.8e-4 2.9e-5 1.3e-7 4.7e-7 1.2e-8

BH3 1636 3543 6301 11126 18583
1.3e-4 3.6e-5 4.0e-6 1.6e-7 6.3e-8

CClFH-CClFH(Ci) 5002 9657 17452 42250 81220
8.1e-4 1.3e-4 1.1e-6 3.3e-7 1.3e-7

C2H6 (D3d) 4074 7168 14190 21643 47916
1.9e-4 1.3e-4 8.1e-6 3.5e-7 1.3e-7

CFH-CFH 2932 6670 13555 31212 61815
3.4e-4 2.5e-5 7.5e-6 3.8e-8 4.4e-8

CCl2-CH2 (C2V) 2989 7411 12972 31934 69892
5.1e-4 5.4e-5 4.5e-6 3.5e-7 9.3e-8

C6H6 5936 12121 22349 37738 72509
4.3e-5 1.8e-4 2.3e-5 5.1e-7 1.2e-7

SF6 4078 7240 12475 27937 44397
1.9e-3 1.3e-4 8.5e-7 1.6e-6 8.7e-8

C5H5N5 6925 17314 28434 54911 97331
2.2e-3 2.5e-4 7.7e-7 4.4e-7 9.1e-8

ZnCl3(C5H6N5) 6225 11834 26909 56319 127191
3.0e-3 1.0e-4 2.2e-5 1.4e-6 1.6e-7

C5H6N2O2-C6H4O2 11507 24135 39541 72351 157869
5.3e-3 3.9e-4 4.1e-5 7.8e-7 5.1e-8

C12H14N2O2 6041 15139 31249 67608 126171
1.7e-3 2.2e-3 1.3e-4 7.0e-5 1.1e-6

C15H12N2O2 12584 26387 44360 79836 180675
1.3e-2 1.5e-3 1.0e-4 2.2e-5 4.0e-7

C17H21NO4 9573 21008 38657 77423 165136
4.7e-3 4.2e-4 6.5e-5 1.2e-8 4.9e-7

C20H29N3O2 23277 49647 75880 162002 272667
3.3e-3 5.5e-4 5.8e-5 3.2e-6 8.6e-7

C60 28098 79296 133898 199916 332337
2.7e-3 5.6e-4 2.2e-5 5.7e-7 1.8e-9

C240 100775 296244 473956 648840 1093610
3.5e-2 4.5e-3 3.0e-4 9.8e-6 6.0e-8

a No advantage has been taken of molecular symmetry.

λ ) C(Ngrid

Natom
)-n

(25)
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to the data in Figure 1a, it is found that our grid with Becke’s
weight givesC ) 105.6 andn ) 2.6 while Delly’s weight (ωi-
(Fi/ri

2)) and our grid yieldC ) 103.9 andn ) 2.3. Therefore,
we might expect that Becke’s weights would more readily

converge to higher accuracy targets while Delley’s weights are
more efficient for typical accuracy requirements because of the
much smaller prefactor. These conclusions are supported by
log-log plots shown in Figure 1c.

IV. Results for the New Multicenter Integration Scheme

This section will present results obtained using our one-center
integration scheme in conjunction with our multicenter decom-
position strategy outlined in section II. We will demonstrate
the behavior of this approach by integrating the total charge
densities of the 21 molecules in the PBS test suite for five
different accuracy targets of 10-3-10-7. In addition, we will
discuss the application of our approach to quantities more
relevant to the construction of the matrix representation of the
Hamilitonian. It will be shown that our method is more efficient
for all systems tested.

IVa. Integration of Total Charge Densities. The use of eq
21 to integrate the total charge density of a polyatomic system
requires that one atom must be designated as atom “i”. This
action has the effect of collapsing any explicit or implied sums
over this index. Thus, by selecting a specific “i” atom and
replacingV with F, eq 21 reduces to

where Gii
i and Gii

k are given by eqs 22 and 23 with the
understanding that the sum overk extends to all atoms in the
system except atom “i”. From eq 26 it is clear, however, that
atoms “i” and “k” are treated differently. Although the total
charge obtained is independent of which atom is chosen as atom
“ i”, the number of grid points per atom is dependent on this
selection. By convention we select the atom with the largest
nuclear charge as the “i” atom. If more than one such atom
exists, the atom that is closest to the geometric center of the
molecule is chosen as the “i” center.

The result of using our one-center grid and decomposition
scheme to obtain the total charge density for the PBS test suite
and C240 is contained in Table 2. A comparison of the data in
Tables 1 and 2 quickly reveal that a significant reduction in the
number of grid points for all 21 molecules for all accuracy
targets has been achieved using the new decomposition scheme.
Curve D of parts a and b of Figure 1 further illustrate this point
by demonstrating how the number of grid points varies as a
function of accuracy target and number of atoms, respectively.

We can further demonstrate the importance of the multicenter
decomposition scheme on the integration efficiency by inves-
tigation how the average grid saving factor

varies as a function of the accuracy targetε. In this expression,
NBLH

m(ε) represents the number of grid points needed using
Becke’s weights and our one-center grid to achieve a given
accuracy targetε (the analogous quantity indexed by LH
corresponds to the use of our weights and grids). Note that the
sum is over all 21 molecules in the test suite. The denominator
of the expression represents the number of grid points needed
using our decomposition scheme and one-center grid, andm is
an index that represents the specific molecules in the test suite.
Figure 2a plots the behavior of the computed ratios as a function
of the five target accuracies. From this figure it can be seen

Figure 1. Comparison of several integration schemes’ ability to
integrate the total molecular charge. Curve A [squares] illustrates the
result of using Becke’s weighting scheme in combination with PBS’s
one-center (ref 11). Similarly, curve B [triangle] results from Becke’s
weight combined with our 1c mesh (section III). Curve C [circle] is
due to a Delley weight and our 1c grid, while curve D [diamonds]
demonstrates our multicenter integration scheme combined with our
1c grid. Curve E uses the same method as that for curve D but for
integrating matrix element type integrals as described in section IV.
(a) Average number of 1c grid points required to achieve the target
accuracy. (b) Average number of 1c grid points as a function of the
number of atoms in the systems for a target integration accuracy of
10-5. (c) Average number of grid points as a function target accuracy
derived from the fitted prefactors and the rates of convergence
expression found in section III.

∫F dxb ) ∫FGii
i dxb + ∑

k*i
∫FGii

k dxb (26)

Sa )
1

21
∑
m)1

21 NBLH
m(εi)

NLH
m(εi)

(27)
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that our decomposition scheme and one-center grid are 4-11
times more efficient than that reported by PBS. It is also
important to note that this “saving factor” increases as the
absolute error in the calculation decreases.

By performing a least-squares fit of the data in Table 2 to eq
25, we find that our method is characterized by a prefactorC
) 107.0 and a convergence ordern ) 3.8. Note that although
our prefactor is larger than Becke’s (C ) 105.6) and Delley’s
(C ) 103.9), our order of convergence is higher than Becke’s
(n ) 2.6) and Delley’s (n ) 2.3). Therefore, our approach both
is more efficient at practical accuracy levels and is significantly
more efficient when high-accuracy calculations are required.
This can clearly be seen by comparing curves B-D in Figure
1c, which use our one-center grid with three different multicenter
decomposition schemes.

By inspection of the data in Table 2, it is also clear that as
the number of atoms in a molecule increases, so does the
percentage reduction in the number of grid points needed to
achieve the accuracy targets using our approach. Simply stated,
the “larger” the polyatomic system the more efficient our
approach becomes compared to previously publish schemes.
This observation can be quantified by forming the saving factor,

where the variables are defined as in eq 27. Note that in this

expression the averages are being formed over the five target
accuracies (as opposed to the 21 molecules in eq 27). A plot of
the resulting ratios, as a function of the number of atoms in the
system, is shown in Figure 2b. From these data it can be seen
that the “saving factor” ranges from 3 to 20 and increases as
the number of atoms in the system increases.

Although it is difficult to ascribe the increases in efficiency
due to the new decomposition scheme to any particular aspect
of the theory, a qualitative explanation can be obtained by
investigating the spatial variation of integrand weight product.
Figure 3 shows the log of the variation in the one-center
integrand resulting from Becke’s (Figure 3a) and our (Figure
3b) decomposition schemes for the total density times the
partition weight for the oxygen atom in a water molecule. With
respect to the radial direction, it can be seen that either
decomposition scheme exhibits a smooth monotonic decay and
is therefore easily integrated. In fact, the radial integration of
Becke’s integrand may be slightly easier than ours, since the
function decays more rapidly to negligible values. Along the
angular direction, however, Becke’s integrand exhibits pro-
nounced oscillations. Since our integrand is smoother, it is not
surprising to expect that our approach would require fewer grid
points to achieve a particular accuracy. Similar results can be
obtained for other molecules in the test suite. The oscillations
in either decomposition scheme are introduced by the use of
sharply varying cutoff functions (see eq 12).3,13Becke’s scheme,

Figure 2. Improvement by the present multicenter decomposition
scheme over that of ref 3 to integrate the total charge. The same one-
center 1c grid is used in both calculations. The graph illustrates effects
due solely to multicenter decomposition scheme. (a) Ratio of the number
of grid points needed vs target accuracy. (b) Ratio of the number of
grid points needed vs number of atoms in the test molecule.

Sm )
1

5
∑
i)1

5 NBLH
m(εi)

NLH
m(εi)

(28)

Figure 3. Comparison of one-center integrands (total charge density
times one-center weights) for H2O using our method and that of ref 3.
The coordinate system is as follows. The integration origin is located
at the oxygen center, the radius is the distance between a point P and
the O nucleus in units of OH bond length. All points P are contained
within the molecular plan.θ is the angle between theC2V axis and that
of OP in degrees. Part a is a semilogrithmic plot of the integrand
variation using the approach described in this work, whereas part b
demonstrates the behavior using the approach described in ref 3. Only
values larger than 1× 10-10 are shown in part b.
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however, uses a product formula, which has a tendency to create
nodes in the angular variation of the integrand to combine these
functions, whereas our approach uses a summation formula to
obtain the nuclear weights. In systems that contain many nuclei
the product form appears to enhance the oscillatory behavior
of the integrand in the angular directions. To integrate the
resulting function accurately can therefore require large angular
grids. For this reason our approach becomes progressively more
efficient as the number of atoms in the system is increased.

IVb. Tests Relevant to Fock Matrix Construction. In this
subsection we concentrate on testing our approach with inte-
grands that more accurately reflect the challenges typical of
electronic structure calculations than those presented by the total
charge density. Specifically, we wish to apply the method to
the evaluation of matrix elements of the form〈øRi|V|øâj〉 more
relevant to the construction of the Hamiltionian. To avoid an
intractable investigation of the complicated dependence of
〈øRi|V|øâj〉 on the basis set (and the possible loss of generality
of our results), we chose instead to test the integration of the
quantityFiV, whereFi is the atomic density of atom “i”. As a
consequence, the required formulas are given by eqs 21-23
with the exception that the productøRiøâi should be replaced
by Fi, i.e.,

With respect to the potentialV, we will report grids capable of
simultaneously integrating both the LDA effective potential,
Veff

LDA, and the exchange-correlation potential only,Vxc
LDA.

These potentials have been selected because of their common
use in density functional theory. For these tests (and in our
electronic structure program GAPSS28,29) we use the specific
partition functionωk ) VH

katom/∑iatom(allatoms)VH
iatom in eq 13 where

VH is the atomic Hartree potential obtained from an atomic
Hartree-Fock calculation.

The number of grid points needed to integrate the integrands
just described for the five target accuracies for the entire PBS
test suite is found in Table 3. If a polyatomic system contains
multiple atomic centers with the same chemical identity and
those atoms are not symmetry-related, then the largest grid
determined by the grid generator for that set of atoms will be
assigned to all atoms of that chemical type. Since no analytical
result exists for these test cases, the errors reported in Table 3
have been obtained by comparison to results derived with grids
whose absolute accuracy target was 10-8 au. From a least-
squares fit to the data using eq 25 we find thatC ) 101.7 and
the order of convergencen is 2.1. By comparison of curve E in
parts a-c of Figure 1 and other curves in the same figure, its
is clear that the method being proposed is highly competitive.

IVc. Testing the Inner and Outer Zone Partitioning
Scheme. In the previous section the inner zone radius,Ro, was
chosen such that all atoms were contained in the inner zone.
This condition can always be achieved in finite systems by
choosingRo to be larger than any nuclear-nuclear distance in
the polyatomic system. In this subsection, we demonstrate how
the zone partitioning scheme can be used to take advantage of
the rapid decay of operators when represented in local bases.
By using systems large enough to profit from this partitioning
scheme, we will demonstrate how the selection of the zone
radius affects the accuracy and efficiency associated with
computing the prototypical matrix elements defined in eq 29.
The effect of using three inner zone radii (7,10, and 15 au) for
two large molecules (C60 and C240) and three crystals (MgO,
eight atoms in a simple cubic cell,a ) 4.21 Å; TiS2, trigonal,

three atoms per cell,a ) 3.4073 Å,c ) 5.6953 Å; silica_zms5,
orthorhomobic, 288 atoms per unit cell,a ) 20.07 Å,b ) 19.92
Å, c ) 13.42 Å) is shown in Table 4.

Several issues associated with making a proper selection of
Ro can be understood by inspecting the data in Table 4 associated
with C60. For example, the results reported in that table forRo

) 15 au can be seen to be identical to that in Table 3. This is
because all atoms in this molecule are within 15 au of each
other and are therefore contained in the inner zone. The lack of
an entry for the accuracy target 10-7 for Ro ) 7 au, however,
is an example of selecting a radius that is too small to
economically achieve the accuracy target. In this case, the
integrand has not been properly decomposed and even very large
one-center grids centered on inner zone atoms (300 000 points/
atom) are unable to integrate the integrand to the desired levels.
Under such circumstances, it is less expensive and more reliable
to choose a larger inner zone radius. Using a slightly larger
radius will more effectively decompose the integrand and reduce
the contribution to the integral from the outer zone. This increase
in inner zone radius allows smaller grids to be used in the
integration of the outer zone at the expense of increasing the
number of atoms (and therefore one-center grids) in the inner
zone. Actual physical systems, however, are not very sensitive

∫FiV dxb ) ∫FiVGii
i dxbi + ∑

k∈I
∫FiVGii

k dxbk (29)

TABLE 3: Number of Grid Points Generated by ∫GiV drb (V
) Veff

LDA and Vxc
LDA) at Five Accuracy Targets and Resulting

Maximum Absolute Errors (Lower Rows) for 21 Moleculesa

tolerence E-3 E-4 E-5 E-6 E-7

H2O 1392 4031 16476 33609 110892
1.4e-4 2.0e-5 1.6e-6 6.6e-7 1.1e-8

NH3 1665 5132 14337 38730 142149
8.0e-4 1.9e-5 8.5e-7 3.5e-7 5.1e-8

CH4 1534 3830 20382 37865 87075
5.4e-4 3.0e-5 8.9e-6 3.3e-7 1.6e-7

C2H6 (D3h) 2263 5526 12242 37281 135200
2.3e-4 2.5e-5 2.8e-6 7.2e-7 9.2e-8

C2H5OH 4149 9357 23099 82798 346674
8.4e-4 9.6e-5 1.9e-6 1.7e-7 1.0e-7

ClOH 1741 3715 6158 19822 83779
3.5e-5 3.4e-5 7.8e-6 4.3e-7 3.5e-8

BH3 1161 4101 9529 48492 196244
1.7e-4 3.2e-5 3.1e-6 3.8e-7 7.9e-8

CClFH-CClFH(Ci) 3992 10705 27575 73968 246193
3.6e-4 9.7e-6 2.7e-6 3.3e-7 2.2e-8

C2H6 (D3d) 2579 5742 10890 32203 138805
3.5e-4 5.0e-5 3.0e-6 4.1e-7 1.4e-8

CFH-CFH 2300 5282 16907 72406 146578
3.8e-4 5.7e-5 3.0e-6 2.1e-7 5.9e-8

CCl2-CH2(C2V) 2234 5655 14129 39726 190967
6.3e-5 5.3e-5 3.9e-6 5.3e-7 5.4e-8

C6H6 4147 9884 24497 86139 421821
6.4e-4 2.5e-5 1.2e-5 7.2e-7 1.4e-8

SF6 2828 6133 13328 26265 65114
3.0e-4 3.2e-5 7.8e-6 7.1e-8 2.9e-8

C5H5N5 5647 13728 36684 104195 431752
4.1e-4 1.3e-5 1.8e-5 2.9e-6 3.4e-7

ZnCl3(C5H6N5) 6373 14085 33244 91886 360060
7.3e-4 3.2e-4 6.8e-6 2.0e-6 4.1e-7

C5H6N2O2-C6H4O2 11447 24996 62402 198280 593262
1.8e-4 3.3e-5 9.8e-6 1.1e-6 2.0e-8

C12H14N2O2 8969 16882 50088 113325 445389
7.4e-5 2.9e-5 7.6e-6 8.9e-7 1.2e-7

C15H12N2O2 8868 21015 66982 108391 282218
1.9e-3 2.7e-4 3.8e-6 1.5e-6 5.3e-7

C17H21NO4 13886 38621 68149 200098 606887
9.8e-4 1.4e-4 2.1e-5 5.6e-7 1.7e-7

C20H29N3O2 28297 60466 137569 351557 888362
5.3e-4 6.4e-6 3.8e-5 2.0e-7 5.3e-7

C60 22375 49225 102957 242240 690930
5.3e-4 1.5e-4 1.3e-5 2.7e-6 7.7e-8

aNo advantage has been taken of molecular symmetry.
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to the specific selection ofRo. For all systems reported in Table
4, for example, an inner zone radius of 10 or 15 au has virtually
no effect on the ability to achieve any of the five accuracy
targets. According to our experience and the data in Table 4 a
radius of 7-8 au will cost-effectively produce the accuracy
target typical in electronic structure theory (in the range of
10-3-10-4 au). For higher accuracy calculations an inner zone
radius of 10 au is used in GAPSS28,29 and recommended for
general use.

With an appropriately chosen inner zone radius the number
of grid points needed to evaluate an integral depends primarily
on the number of atoms in the inner zone sphere (as opposed
to the total number of atoms in the system). For this reason our
approach exhibits excellent scaling as a function of system size.
For example, the number of atoms inside theRo ) 10 au inner
zone spheres of C240 and C60 are 36 and 32, respectively. The
results in Table 4 show that the number of grid points for the
two molecules at a given accuracy are approximately equal.
Similar correlation can be found for the other systems in Table
4. In general, the cost of an integral with our method will not
increase with increasing system size once some “critical” size
has been exceeded. As a consequence, the larger the system
the greater the savings with respect to conventional approaches.
The application of our method to periodic systems is particularly
valuable, since it provides a natural mechanism to distinguish
between regions of the crystal that contribute heavily to a given

integral (and therefore must be treated very carefully) and those
regions where a more approximate treatment is sufficient. The
data for the bulk crystalline systems, MgO, TiS2, and ZSM-5,
demonstrate that the method behaves very similarly for infinite
periodic systems.

The scheme just discussed is fully implemented in our
periodic Gaussian basis DFT code GAPSS and is routinely used
to efficiently obtain physically correct results. As brief examples
of applications of our method, we show calculations of bulk
properties of silicon and aluminum in Table 5. These results
were obtained with our code GAPSS that finds exchange-
correlation energies and Hamiltonian matrix elements by the
integration techniques described above. Other aspects of GAPSS
have been described elsewhere.28 Orbital basis sets were of
approximately TZVP quality and were constructed by reopti-
mizing molecular DFT basis sets32 for the crystalline environ-
ment. Density basis sets used in the Coulomb part of the
calculation were taken from the molecular sets32 with essentially
no modifications. We used the VWN parametrization33 of the
local density approximation for Si and Al and the PBE96 form34

of the generalized gradient approximation for Al. Structural
parameters were obtained from calculated energy versus volume
curves by fitting to Murnaghan’s equation. Our results are in
close agreement with the typical high-quality LDA calcula-
tions19a,35,36,38shown in Table 5. As usual, the LDA results all
slightly underestimate the lattice constants and overestimate the
cohesive energies relative to experiment37-40 but give good
structural properties overall. The GGA yields improved values
for the bulk modulus and cohesive energy of Al relative to
experiment but slightly overcorrects the lattice constant, as is
typical for that approximation. Also as expected, the DFT
eigenvalue differences from all calculations (Table 5a) are
significantly smaller than the corresponding experimental
excitation energies, but here again, our results agree closely with
other calculations. Thus, our method gives accurate results for
prototypical examples of both covalent (Si) and metallic (Al)
bonding in extended systems.

V. Concluding Remarks

In this work, we have formulated a multicenter integration
scheme where the cost for an integral does not increase with
increasing system size. This method can be efficiently applied
to periodic systems where the application of economical

TABLE 4: Number of Grid Points, as a Function of Inner
Zone Radius, Required to Integrate the Same Quantity
Evaluated in Table 3 for Several Large Molecules and
Crystalsa

tolerance E-3 E-4 E-5 E-6 E-7

C60

Ro ) 7 au 6997 15616 53007 162458
6.0e-4 1.4e-4 1.2e-5 1.7e-6

Ro ) 10 au 12079 26582 57904 148052 505333
5.0e-4 1.5e-4 1.2e-5 2.1e-6 1.4e-8

Ro ) 15 au 22375 49225 102957 242240 690930
5.3e-4 1.5e-4 1.3e-5 2.7e-6 7.7e-8

C240

Ro ) 7 au 4321 14343 81522 226418
1.2e-4 3.1e-5 8.7e-6 1.0e-6

Ro ) 10 au 11386 38291 57793 165434 495464
9.5e-5 2.4e-5 1.2e-5 9.6e-7 8.0e-7

Ro ) 1 au 23632 79748 119711 342664 996145
9.1e-5 2.2e-5 1.2e-5 6.9e-7 2.3e-7

MgO
Ro ) 7 au 8348 20344 76695 225967 580917

7.4e-4 8.3e-5 4.0e-6 4.3e-6 1.3e-7
Ro ) 10 au 22898 55462 147281 359677 954336

7.7e-4 1.7e-5 3.4e-6 6.0e-7 1.4e-7
Ro ) 15 au 68746 168513 453378 1103836 2897164

7.7e-4 7.8e-5 8.1e-6 5.5e-6 2.4e-7

TiS2

Ro ) 7 au 4907 12986 53405 105222 392591
3.8e-4 4.7e-4 6.4e-4 8.2e-7 1.4e-7

Ro ) 10 au 8555 21572 49725 161252 241751
4.9e-4 3.6e-4 6.3e-4 1.1e-6 3.7e-7

Ro ) 15 au 33188 81456 193083 602710 854030
5.1e-4 4.0e-4 6.3e-4 1.5e-6 9.5e-7

silicious ZSM-5
Ro ) 7au 4848 24576 80990 269816

2.3e-4 2.1e-4 2.4e-4 3.5e-6
Ro ) 10 au 11518 25669 86997 237137 1188304

5.5e-4 1.1e-4 2.2e-4 2.3e-6 2.9e-8
Ro ) 15 au 32788 73733 243115 563525 2897445

5.5e-4 1.3e-4 2.2e-4 8.0e-7 5.9e-8

a No symmetry has been used in these calculations; maximum
absolute errors are also reported.

TABLE 5

(a) Comparison of Equilibrium Lattice Constant, Bulk Modulus,
Direct and Indirect Band Gaps, and Valence Bandwidth of

Crystalline Si with Other Typical LDA Calculations, and Experiment

present other LDA experimentc

a (Å) 5.4165 5.4241,a 5.4098b 5.4294
B (GPa) 101.2 99,a 100b 100.8
Eg,direct(eV) 2.80 2.6b 4.185
Eg,indirect(eV) 0.69 0.51,a 0.7b 1.17
VB width (eV) 11.86 11.8b 12.5

(b) Equilibrium Lattice Constant, Bulk Modulus, and Cohesive
Energy of Face-Centered Cubic Al, Calculated by the Method

of the Present Paper with the LDA and PBE-96 GGA Functionals,
Compared with Another LDA Calculation and Experiment

present, LDA present, GGA other LDA expt

a (Å) 3.9875 4.0418 4.0199,d 4.0112e 4.022e

B (GPa) 82.9 74.1 79.7,d 71.5e 72.7f

Ecoh (eV) 3.98 3.50 4.07,d 3.65e 3.37g

a Reference 35.b Reference 36.c Reference 37.d Reference 19a.
e Reference 38.f Reference 39.g Reference 40.
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algorithms is critical. We have demonstrated that the largest
gains in efficiency originate from our new decomposition
scheme. We have also proposed and discussed an adaptive one-
center integration scheme and automatic grid generator and
compared the capabilities of these formulations to those that
have been previously published. Finally, we have demonstrated
that when combined, our one-center integration scheme and
decomposition strategy are more efficient, to the best of our
knowledge, than previously published methods.
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